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This paper presents the fundamental principles underlying tabu search as a strategy for combinatorial optimization 
problems. Tabu search has achieved impressive practical successes in applications ranging from scheduling and 
computer channel balancing to cluster analysis and space planning, and more recently has demonstrated its value 
in treating classical problems such as the traveling salesman and graph coloring problems. Nevertheless, the 
approach is still in its infancy, and a good deal remains to be discovered about its most effective forms of 
implementation and about the range of problems for which it is best suited. This paper undertakes to present the 
major ideas and findings to date, and to indicate challenges for future research. Part I of this study indicates the 
basic principles, ranging from the short-term memory process at the core of the search to the intermediate and 
long term memory processes for intensifying and diversifying the search. Included are illustrative data structures 
for implementing the tabu conditions (and associated aspiration criteria) that underlie these processes. Part I 
concludes with a discussion of probabilistic tabu search and a summary of computational experience for a variety 
of applications. Part I1 of this study (to appear in a subsequent issue) examines more advanced considerations, 
applying the basic ideas to special settings and outlining a dynamic move structure to insure finiteness. Part I1 
also describes tabu search methods for solving mixed integer programming problems and gives a brief summary 
of additional practical experience, including the use of tabu search to guide other types of processes, such as those 
of neural networks. 

T a b u  search is a strategy for solving combinatorial 
optimization problems whose applications range from 
graph theory and matroid settings to general pure and 
mixed integer programming problems. It is an adaptive 
procedure with the ability to make use of many other 
methods, such as linear programming algorithms and 
specialized heuristics, which it directs to overcome the 
limitations of local optimality. 

Tabu search has its origins in combinatorial pro- 
cedures applied to nonlinear covering problems in the 
late 1970~,[~1 and subsequently applied to a diverse 
collection of problems ranging from scheduling and 
computer channel balancing to cluster analysis and 
space planning.'3.4,6.71 Latest research and computa- 
tional comparisons involving traveling salesman, graph 
coloring, job shop flow sequencing, integrated circuit 
design and time tabling problems have likewise dis- 
closed the ability of tabu search to obtain high quality 
solutions with modest computational effort, generally 
dominating alternative methods tested.['. 12- 13. A 
recent independent development of several of its 
ideas[lol also has been applied successfully to maximum 
satisfiability problems.[''] Such applications, for prob- 
lems ranging in size from hundreds to millions of 
variables, are elaborated in Section 10. 

1. Background and Notation 

To describe the workings of tabu search, we represent 
a combinatorial optimization problem in the following 
form. 

(p) Minimize c(x): x € X in R,. 

The objective function c(x) may be linear or nonlinear, 
and the condition x E X is assumed to constrain spec- 
ified components of x to discrete values. In some 
settings (P) may represent a modified form of some 
original problem, as where X is a superset of the vectors 
that normally qualify as feasible, and c(x) is a penalty 
function, designed to assure that optimal solutions to 
(P) likewise are optimal for the problem from which it 
derived. 

A wide range of procedures, heuristic and optimal, 
for solving various problems capable of being written 
in the form (P) can be characterized conveniently by 
reference to sequences of moves that lead from one trial 
solution (selected x E X) to another. We will define a 
move s to consist of a mapping defined on a subset 
X(s) of X: 

Subject classrfica~ron~ Programming: integer, heuristic. 
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Associated with x E Xis the set S(x) which consists 
of those moves s E S that can be applied to x;  i.e., 
S(x) = {s E S: x E X(s)l (and we may thus also write 
X(s) = {x E X: s E S(x))). The set S(x) can be viewed 
as a "neighborhood function" (see, e.g. [19, 201). 

Common Examples of Moves 

As a prelude to the main concerns of this paper, it is 
useful to elaborate briefly the nature of moves that are 
relevant to the contexts we will be examining. In many 
applications of interest, if x' and x" are distinct ele- 
ments of the set X(s), then s(xf) # s(x"); i.e., it is 
convenient to classify moves so that distinct trial solu- 
tions are transformed into new trial solutions that are 
also distinct. A simple example is the set of moves 
between adjacent vertices of the zero-one unit hyper- 
cube, as illustrated by the move s(x) = x + el, where eJ 
is the unit n-vector with a 1 in position j. (If X denotes 
the set of all such vertices, then the appropriate form 
of X(s) in this case is given by X(s) = (x E X: xJ = 01.) 
Another example is the common move in graph theory 
and matroid settings that consists of an augmentation 
step defined relative to an alternating path. In a nonlin- 
ear optimization context, a standard move is s(x) = 
x + ud, where d is a specified direction vector, such as 
a generalized gradient, and u is a scalar step size. This 
latter type of move can map distinct trial solutions into 
the same vector unless its classification is made to 
depend on the identity of both u and d. 

An important type of move from mixed integer 
programming is the familiar composite move that in- 
crements or decrements the value of one of the integer 
variables, and then determines the values of the contin- 
uous variables by solving the resulting linear program. 
Notationally, for this case we write x = (xI, x,), where 
XI and x, respectively are the vectors of integer and 
continuous variables, and let X = (x: AIXI + Acx, = b, 
x 2 0 and x1 integer]. The composite move for mixed 
integer programming may then be expressed as a map- 
ping from x' to X" given by s(xI1, x C f )  = (xIt', x,"), 
where xl" = s1(xI1) and xc" is an optimal solution to 

Minimize c(xIU, x,): (xI", x,) E X. 

In particular, xl" = sI(xI') represents a component 
mapping of the form xI" = xI' + e, or xI" = xIf - e,; 
and the condition (xI", x,) E X identifies x, as an 
element of the set {x,: A,x, = b - AlxIW, xc 2 01. We 
will refer again to this type of move in Part 11. 

2. A Simple Form of Tabu Search 

We first present tabu search in a simple form that 
discloses two of its key elements: that of constraining 
the search by classifying certain of its moves as forbid- 
den (i.e., tabu), and that of freeing the search by a short 

term memory function that provides "strategic forget- 
ting." Later sections introduce elaborations of the basic 
procedure, exposing the dual relationship between tabu 
restrictions and aspiration criteria as means for con- 
straining and guiding the search process, and introduc- 
ing the use of intermediate and long term memory 
functions that operate in counterpoint to the function 
of short term memory. 

It is convenient to start by reference to the familiar 
class of approaches known as hill climbing heuristics, 
which undertake to progress unidirectionally from their 
starting point to a local optimum. (In the present min- 
imization context, the hill is "inverted" so that the 
direction of climbing is downward.) 

HILL CLIMBING HEURISTIC FOR (P) 
1. Select an initial x E X. 
2. Select some s E S(x) such that 

If no such s exists, x is a local optimum 
and the method stops. Otherwise, 

3. Let x := s(x) 
and return to Step 2. 

While conceptually simple in general outline, such 
hill climbing heuristics can have useful (and sometimes 
subtle) characteristics, and in fact encompass a variety 
of elegant mathematical algorithms. If X is the set of 
feasible extreme points for a linear program and S(x) 
is the set of moves that lead from x to an adjacent 
extreme point, then the simplex method (employing 
implicit or explicit perturbation to avoid degeneracy) is 
such a hill climbing procedure. Similarly, if X is the 
dual feasible region for a linear program, and S(x) is 
the set of moves that determines an improving gradient 
vector by mapping x into the point (1, I , .  . . , I), and 
then chooses a step size that selects a new point about 
0.9 (preferably) of the distance from x to the dual 
feasible boundary, then the Karmarkar dual affine lin- 
ear programming method likewise is such a hill climb- 
ing procedure. Combinatorial search strategies are well 
advised, therefore, to heed the potentialities that reside 
within such methods. 

The chief limitation of a hill climbing procedure 
in a combinatorial problem setting is that the local 
optimum obtained at its stopping point, when no im- 
proving moves are possible, may not be a global opti- 
mum. Tabu search guides such a heuristic to continue 
exploration without becoming confounded by an ab- 
sence of improving moves, and without falling back 
into a local optimum from which it previously emerged. 
From its ability to incorporate and guide another 
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procedure, in amended form as a subroutine, tabu 
search may be viewed as a metastrategy for combina- 
torial problem solving. 

The operation of the procedure in simplified form 
may be described as follows. A subset T of S is created 
whose elements are called tabu moves. The elements of 
T are determined by a non-Markovian function that 
utilizes historical information from the search process, 
extending up to t iterations in the past, where t can be 
fixed or variable depending on the application or stage 
of search. Membership in T is by means of an itemized 
list or by reference to a set of tabu conditions (e.g., 
linear inequalities or logical relationships) expressed 
indirectly in terms of a current trial solution x; for 
example, by letting T take the form T(x) = (s E S: s(x) 
violates the tabu conditions). For an appropriately de- 
termined T and an evaluator function denoted by 
OPTIMUM, subsequently identified in greater detail, 
the procedure may be described as follows. 

SIMPLE TABU SEARCH 

1. Select an initial x E X and let x* : = x. Set 
the iteration counter k = 0 and begin with T 
empty. 

2. If S(x) - T is empty, go to Step 4. 
Otherwise, set k := k + 1 and select sk E 
S(x) - T such that sk(x) = OPTIMUM(s(x): 
s E S(x) - T).  

3. Let x := sk(x). If C(X) < ~(x*) ,  where x* denotes 
the best solution currently found, let x* := x. 

4. If a chosen number of iterations has elapsed 
either in total or since x* was last improved, 
or if S(x) - T = 0 upon reaching this step directly 
from Step 2, stop. 
Otherwise, update T (as subsequently identified) 
and return to Step 2. 

Three aspects of this version deserve emphasis: 
(1) the use of T provides the "constrained search" 
element of the approach, and hence the solutions gen- 
erated depend critically on the composition of T and 
the way it is updated at Step 4; (2) the method makes 
no reference to the condition of local optimality, except 
implicitly where a local optimum improves on the best 
solution previously found; (3) a "best" move (rather 
than an improving move) is chosen at each step, em- 
ploying the criteria embedded in the OPTIMUM func- 
tion. 

After a preliminary discussion of these issues, an 
example will be provided to make the discussion con- 
crete and to indicate data structures convenient for 
implementing the procedure. 

First we consider some of the forms of OPTIMUM 
and the tabu set T. A natural choice for the OPTIMUM 

function is given by selecting s~(x)  SO that 

c(sk(x)) = Minimum(c(s(x)): s E S(x) - T). 

In cases where exclusion from T can be expressed as a 
requirement to satisfy a set of inequality constraints 
(such as bounds on variables), and the set S(x) can be 
similarly characterized, the solution s(x) obtained from 
defining OPTIMUM in this fashion may represent the 
outcome of solving an auxiliary optimization problem. 
(Such a possibility is directly relevant to integer pro- 
gramming applications using a linear programming 
method as a heuristic subroutine, as elaborated in 
Part 11.) 

By the preceding form of OPTIMUM, each exe- 
cution of Step 2 moves from the current x to an s ( ~ )  
that yields the greatest improvement-or, lacking the 
possibility of improvement, the least disimprove- 
ment-in the objective c(x), subject to the restriction 
that only non-tabu moves are allowed. In cases where 
the set S(x) - T may be large, and processed by 
itemization rather than auxiliary solution, it is appro- 
priate for the OPTIMUM function to be based on a 
strategy for sampling this region, shrinking S(x) - T 
for the purpose of identifying the minimum c(s(x)). 
Picking the first s such that c(s(x)) < c(x), if one exists, 
provides one instance of such a sampling strategy, but 
tabu search generally proceeds more aggressively. This 
approach contrasts with methods that undertake to 
progress slowly to a local optimum, such as the simu- 
lated annealing methods based on Metropolis (or "cool- 
ing") strategies, which rely on the premise that a slow 
descent, appropriately regulated, will make the local 
optimum more nearly a global one. (There nevertheless 
may be advantages for integrating tabu search with such 
methods, as subsequently noted.) 

The rationale underlying the aggressive orientation 
of tabu search derives from two considerations. First is 
that many optimization problems can be solved opti- 
mally by making a "best available move" at each step, 
a phenomenon that goes beyond the well known results 
for greedy algorithms. Minimum cost network flow 
problems and weighted matroid intersection problems, 
for example, can be solved by moves based on succes- 
sively identified best (shortest) paths. Choosing moves 
other than best ones can lead to inferior solutions for 
these methods, while other methods for these problems, 
which do not require best moves at each step, are not 
injured (and are often accelerated) by choices with the 
highest evaluations. 

The second consideration underlying the aggres- 
sive orientation of tabu search stems from the proce- 
dural organization by which local optimality does not 
present a barrier, and hence offers less compelling rea- 
sons for delaying the approach to it. Rather than spend 
proportionately more time in regions whose solutions 
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are proportionately less attractive, tabu search under- 
takes to devote the larger share of its effort to exploring 
regions where solutions are good. (In situations where 
slow descent strategies appear valuable,['4, ''I they may 
be used to provide an initial point of departure.) 

The simple rule that selects the minimum c(s(x)), 
subject to the tabu restrictions, has in fact proved 
successful in a variety of applications. When the mini- 
mum is expensive to compute, an approximation to it 
may be chosen as an alternative to reducing the sample 
region. 

A similarly straightforward but likewise effective 
form for the set T is given by 

T =  Is-': s = sh for h > k - t )  

where k is the iteration index and s-I is the inverse 
of the move s; i.e., s - ' (~(x) )  = x. In words, T is the 
set of those moves that would "reverse" (or "undo") 
one of the moves made in the t most recent iterations 
of the search process. Thus, the operation of updating 
such a Tat Step 3 of the tabu search procedure in effect 
consists of setting T := T - sif., + sk-'. (The minus 
and plus signs indicate the operations of deleting and 
adding elements to a set.) By convention, when k < t 
the reference to s>< is disregarded. 

The indicated form for the tabu set is based on the 
assumption that the likelihood of cycling, i.e., of follow- 
ing a sequence of moves that leads back to a solution 
visited in the past, is inversely related to the distance of 
the current trial solution x from that previous solution. 
If distance is measured in terms of the number of moves 
taken (hence the number of iterations made) since the 
previous solution was visited, subject to the stipulation 
that no intervening move is allowed to reverse one of 
its predecessors, then T is designed to counter cycling 
according to the stipulated assumption. 

Within the structure of certain choice rules and 
tabu conditions, the goal more generally is to avoid 
returning to a previous solution state, e.g., to a previ- 
ously visited solution where the best available (non- 
tabu) move for leaving that solution is the same as 
before. In this case, T more appropriately takes the 
form T = TI U T2, where TI = (sh-I: h => k - t l  ) and 
T2= (sh: h >  k -  t2). 

Thus, conjecturally, by preventing the choice of a 
move that represents the reverse of any taken during a 
sequence of t iterations, the procedure moves progres- 
sively away from all solution states of the previous t 
iterations (in a sense determined by the nature of the 
moves in S), and for t appropriately large, the likelihood 
of return effectively vanishes. It does not follow, how- 
ever, that the objective of tabu search is to choose t 
large. From a competing perspective, the smaller the 
value oft, the greater the latitude of choice the method 
has to drive toward solutions that the function OPTI- 

MUM finds preferable. An empirical discovery from 
the application of tabu search methods is that t has a 
highly stable range of values that both prevent cycling 
and lead to remarkably good solutions. A challenge to 
research would be the development of theory to explain 
this phenomenon. 

Indeed, in practice, T rarely takes the form previ- 
ously indicated, for two reasons. First, in some settings, 
when the move s is chosen from S(x), the tabu condi- 
tion that prevents s-' from being selected also must 
prevent a larger set of moves, dominated by s-', from 
being selected. (Issues concerning "dominated" and 
"deficient" moves are treated in Section 6.) Second, for 
considerations of memory conservation and ease of 
processing, it is often desirable to record less than the 
full range of attributes required to characterize a move, 
or the solution to which it is applied, and hence a 
partial range of attributes is recorded instead (which 
potentially may be shared by other moves or solutions). 
Under these circumstances, a tabu list T does not 
consist simply of the moves sh-I for h > k - t, but of 
collections Ch of moves, where each Ch defines its 
membership by certain attributes, embodied in its tabu 
conditions, which cause it to contain sh-' and other 
moves that likewise satisfy these conditions. Thus, more 
generally, T characteristically takes the form 

T = u Ch: h > k - t (where sh-' E Ch). 

The sets Ch also may be allowed to contain elements 
other than sh-' for strategic regions related to the pre- 
vention of cycling, as will be indicated in Part I1 of this 
study in the context of mixed integer programming. 

One additional important aspect concerning the 
management of T deserves mention. In the case where 
S(x) - T is empty in Step 2 of the Simple Tabu Search 
procedure, the update of Ta t  Step 4 departs from the 
update of T implicit in the preceding discussion (which 
in effect drops the tabu restriction recorded t iterations 
ago) by creating a prioritization equivalent to basing 
the choice on dropping the smallest number of elements 
from T, in the sequence from oldest to youngest, that 
will enable some move(s) to regain a non-tabu status. 
Such a prioritization can be shown to lead to an opti- 
mum in a finite number of steps in simple settings if t 
is allowed to grow with the iteration k, although this 
priority scheme potentially allows superfluous moves 
that can be avoided by refinement. (An example where 
finiteness is assured occurs in the case where giving a 
tabu label to a move reversal corresponds to giving 
a tabu label to the solution reached by this reversal- 
provided the number of solutions is finite and there 
exists a sequence of moves leading from the starting 
solution to an optimal solution.) In practice, for appli- 
cations examined thus far, neither such refinements in 
priorities nor a growing t value have proven necessary. 
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An Example 

Consider a problem of creating an optimal partition of 
a set of elements E into sets El, i E N = ( I , .  . . , n ] .  
Each element e in E has a weight w(e), and each set El 
has a target weight W,. Define w(E,) to be the weight 
of the elements of E assigned to El, that is, w(E,) = 
C (w(e): e E El), where w(E,) = 0 if El is empty. Then 
the goal is to minimize the sum of absolute deviations 
of the weights w(E,) from the target weights W, : 

Minimize ( 1  w(El) - W,  1 : i E N) 

A reasonable set of moves to embed within tabu 
search for this problem arises by starting with some 
arbitrary assignment of elements to the sets, and using 
exchanges that swap an element el currently in set El 
with an element e, currently in set E,. We allow the 
special case where one of el or e, is a "null" element of 
zero weight, which provides a partial exchange that 
simply moves an element from one set to another. 

The OPTIMUM function can take the form of 
prescribing the swap that yields the most favorable 
change in the minimization objective (whether an in- 
crease or decrease), restricting attention to moves that 
do not qualify as tabu. At a corresponding level of 
simplicity, the tabu set Tis given the role of preventing 
the reversal of moves made during the most recent 
t iterations. 

To accomplish the prevention of move reversals, 
and implicitly to define T, we employ two arrays, 
TABULIST and TABUSTATE. (Analogous arrays are 
useful for a wide range of applications of tabu search.) 
TABULIST(p), p = 1, . . . , t records the attributes 
selected to provide a shorthand, or coding, to embody 
the tabu restrictions applicable to associated moves. 
Such attributes can be expressed at varying levels of 
detail. At an extreme, the entire composition of the sets 
E,,  . . . , En could be recorded before and after a move, 
and this record then used to check the corresponding 
composition for a proposed future move to see if it 
qualifies as tabu. A simpler set of attributes appropri- 
ate to our example consists of the two ordered pairs 
(i, w(e,)) and ( j ,  w(e,)). These suffice to identify the 
fact that the associated swap consists of transferring an 
element of weight w(e,) from set El to set E,, and 
an element of weight w(e, ) from set E, to El. 

Note that the precise elements el and e, are not 
identified as part of these attributes, only their weights. 
Such a reduced level of specificity can have strategic 
value. In particular, preventing the reverse swap of the 
weights is more appropriate in the present context than 
simply preventing the reverse swap of the elements. 
Moreover, a sensible implementation of tabu search 
will additionally forbid a move such that w(e,) = w(e, ). 
These observations represent instances of broader 

principles involving equivalent and deficient moves 
as discussed in a later section. 

The attributes (i, w(el)) and ( j ,  w(e, )) are used in 
this example to code the tabu restriction that forbids a 
move if it adds either an element of weight w(el) to set 
El or an element of weight w(e,) to set El. It is impor- 
tant to observe that the same set of attributes can 
be used to code other tabu restrictions. For instance, 
(i, w(e, )) and ( j ,  w(e, )) could instead be used to forbid 
moves that drop an element of weight w(eJ) from set 
E, or an element of weight w(e,) from set E,. (By 
contrast, forbidding a move that drops an element of 
weight w(e, ) from set El or of weight w (eJ ) from set EJ 
would block a move repetition rather than a move 
reversal.) These same attributes could also be used to 
prevent moves that both add and drop the indicated 
elements to create a move reversal. This latter type of 
tabu condition is less restrictive (i.e., it forbids a smaller 
collection of moves) than those previously specified. 

The TABUSTATE array has the role of making 
the tabu restrictions easy to implement. For our ex- 
ample, suppose that the elements to be partitioned 
have r distinct weights, w,, q = 1, . . . , r. Then we let 
TABUSTATE take the form of an n x r matrix 
TABUSTATE(i, q), where TABUSTATE(i, q) has a 
positive value if an element of weight wq is forbidden 
to be added to set E,, and TABUSTATE(& q) has a 
zero value otherwise. For reasons subsequently ex- 
plained, a positive TABUSTATE(i, q) value names the 
most recent position p on TABULIST where the attri- 
bute (i, q )  is recorded (with the purpose of prohibiting 
an element of weight wq from being added to set El). 

The full implementation of tabu search for our 
example problem then becomes as follows. TABU- 
LIST(p), which in our example stores two ordered 
pairs for each value of p = 1, . . . , t, is treated as a 
circular list. To do this, the value p is updated by 
p := p + 1 when the iteration counter is updated 
by k := k + 1, except that p is reset to 1 whenever its 
value would be increased from t to t + 1. Attributes 
recorded at position p of TABULIST automatically 
erase the attributes stored there previously. When this 
erasure occurs, the TABUSTATE array (which begins 
with all entries 0) is modified so that the entries (i, q) 
such that TABUSTATE(& q) = p are reset to yield 
TABUSTATE(i, q) = 0. 

The ordered pairs (i, q) that identify these entries 
of TABUSTATE which are slated to be reset to 0 are 
precisely the two ordered pairs recorded as attributes 
on TABULIST(p). There is one exception: it is possible 
that after setting TABUSTATE(& q) = p (when (i, q) is 
recorded on TABULIST(p)), a later iteration may again 
involve dropping an element of weight w, from set El, 
thus resetting TABUSTATE(1, q) to a new value. Thus, 
it suffices simply to check whether a pair (i, q) stored 
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on TABULIST(p) yields TABUSTATE(& q) = p, and 
if not, the operation of assigning TABUSTATE(i, q) a 
0 value is bypassed. A parallel step can be used to 
facilitate processing of aspiration levels, as subsequently 
discussed in Section 4. 

By means of these updating rules, at each point 
where a swap of elements e, and e, is to be evaluated as 
a candidate for the best move of the current iteration, 
the array elements TABUSTATE(& w(e,)) and TA- 
BUSTATE( j, w(e, )) disclose at once whether the move 
is tabu (according to whether at least one of the two 
elements is positive). This check of the TABUSTATE 
array to see if a move is tabu is postponed until after 
the first local optimum is attained, though such a 
conditional override or tabu status is achieved auto- 
matically with the usp of aspiration criteria. 

One item remains to be resolved: the updating that 
occurs when all available moves of the current iteration 
are classed as tabu (i.e., when Step 4 of the Simple Tabu 
Search Procedure is reached immediately after discov- 
ering S(x) - T is empty in Step 2). The prioritization 
of tabu moves previously mentioned may be accom- 
plished by reference to the values of the entries in the 
TABUSTATE array, where the prescribed move be- 
comes the one that produces the best change in the 
minimization objective subject to being among those 
moves with highest priority. Each nonzero entry of 
TABUSTATE implicitly identifies an associated itera- 
tion value k, and hence by allowing entries associated 
with smaller k values to impart higher priorities, the 
effect can be achieved of choosing a best move subject 
to discarding only the oldest tabu restrictions. 

3. Uses of Aspiration Levels 

An important element of tabu search is the incorpora- 
tion of an aspiration level function A(s, x), alluded to 
earlier, whose value depends on a specified move s 
and/or vector x. We say that the aspiration level is 
attained if 

The role of A(s, x) is to provide added flexibility to 
choose good moves by allowing the tabu status of a 
move to be overridden if the aspiration level is attained. 
The goal is to do this in a manner that retains the 
ability to avoid cycling. 

To discuss a way to achieve this goal, we will refer 
to a move in a second (narrower) sense as a particular 
instance of a mapping, e.g., speaking of a move "from 
x to s(x)." Such a move, whose identity depends on x 
as well as s, will be called a solution-specific move. 

There are three strategic levels for avoiding cycling, 
which involve preventing the solution-specific move 
from x to s(x) if: (1) s(x) has been visited before; (2) 

the move s has been applied to x before; (3) the move 
s-' has been applied to s(x) before. 

Although (1) is the only criterion for preventing a 
solution-specific move that fully assures cycling will not 
occur, the process of checking whether the tabu status 
of a move can be overridden on the basis of ( I )  generally 
requires more memory and greater effort than is con- 
venient to employ. If a tabu move is allowed to be 
made provided only that condition (2) fails, then it is 
possible to reverse a move as soon as it is made, going 
back to a solution just visited. Experiments have shown 
that tabu lists thus designed to prevent repetition rather 
than reversal of moves typically do not work well, for 
reasons that are not difficult to imagine. Condition (3), 
however, is compatible with the tabu list structure. By 
using the check for (3) to avoid cycling, and allowing a 
tabu move that leads from x to s(x) to be made unless 
the solution-specific move from s(x) to x had occurred 
earlier, the attempt to prevent a return to a previously 
generated solution clearly will be supported more effec- 
tively than by relying on condition (2). Adding condi- 
tion (2) to condition (3) serves to strengthen the ap- 
proximation of meeting condition (I). 

The relevance of these observations for creating an 
effective aspiration level function can be clarified by a 
concrete example, as follows. Define A(s, x) = the best 
(smallest) value of c(x') that could be achieved by 
reversing a previous solution-specific move from some 
X' to some s '(x ')  such that c(s'(xl)) = c(s(x)). 

Although the definition appears somewhat forbid- 
ding, the underlying concept is quite simple, and such 
an aspiration level function is easy to record and up- 
date. Suppose that possible values for c(x), for different 
x vectors, are given by the integers q = 1, 2,. . . , U, 
and let BEST(q) = the minimum (best) c(x) value that 
could have been attained by reversing a previous move 
that produced c(s(x)) = q. Initially, set BEST(q) = 
U + 1. Then when a solution-specific move from x to 
s(x) is made, update BEST(q), for q = c(s(x)), by the 
rule BEST(q) = Min(BEST(q), ~((x)) .  Subsequently 
the aspiration level may be allowed to override a tabu 
move that leads from (a different) x to s(x) if 

This particular type of aspiration is an instance of 
checking condition (3). 

The corresponding form of (2) in this setting is 
given by defining A(s, x )  = the best (smallest) value of 
c(sf(x')) achieved for all previous solution-specific 
moves from some x' to some sl(x'), where c(xl) = 

c(x). This alternative aspiration level function can be 
handled by initializing BEST(q) as before, but when a 
solution-specific move from x to s(x) is made BEST(q) 
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is updated for q = c(x), setting 

BEST( q) = Min(BEST( q), c(s(x)). 

The condition for overriding a tabu move that leads 
from (a different) x to s(x) is identical to that given 
before; i.e., 

Conditions (2) and (3) are therefore readily combined 
by making both updates of BEST(q) previously indi- 
cated, since the check to override tabu status is the 
same for these cases. 

Other aspiration level functions that can be easily 
checked and updated are derived by maintaining simi- 
lar records of other attributes of a move-for example, 
defining a value BEST(q) where q denotes the index of 
a variable that is incremented or decremented. Using 
multiple "BEST" lists increases the likelihood that a 
tabu move will be allowed to escape its tabu status (by 
the requirement that at least one of the associated 
inequalities holds), although entailing greater effort for 
checking and recording. An interesting alternative is to 
define A(s, x) only in relation to moves that are cur- 
rently tabu, which leads to the considerations of the 
next section. 

4. Integrated Tabu Restrictions and Aspiration 
Level Criteria 

The tabu restrictions and aspiration level criteria of 
tabu search play a dual role in constraining and guiding 
the search process. Tabu restrictions allow a move to 
be regarded admissible if they do not apply, while 
aspiration criteria allow a move to be regarded as 
admissible if they do apply (i.e., if they are satisfied). 
This complementarity of the notions underlying the 
tabu restrictions and aspiration criteria enables them to 
be integrated into a common framework. 

To describe this framework, it is appropriate to 
introduce notation for the attributes of moves that are 
used to define tabu status. Specifically, let a,(& x), p = 
1, . . . , g, be a set of functions that identify selected 
attributes of move s applied to a solution x. To illus- 
trate, we will refer to an approach used to integrate 
aspiration criteria and tabu restrictions for the traveling 
salesman problem,[51 based on using the familiar 2-OPT 
moves[16' that delete two nonadjacent edges of a tour 
and add back the unique two edges that create a new 
tour. Attribute functions for this application are defined 
in a straightforward way by letting a,@, x)  and a&, x) 
identify the two added edges and letting a&, x) and 
a&, x) identify the two dropped edges (taking g = 4). 

The degree of specificity in identifying such attri- 
butes of moves can vary. For example, a,(& x) and 
az(s, x )  can refer to the added edges without concern 

for any particular ordering or can differentiate the edges 
more precisely-e.g., in the approach of [ 5 ] ,  a,@, x) 
identifies the longer of the two added edges and 
az(s, x) identifies the shorter (with a corresponding 
differentiation of the dropped edges). 

To implement these attribute functions, let E de- 
note the set of all elements that may be identified as 
attributes of moves. In the traveling salesman example, 
E consists of the set of all edges of the graph. It is of 
course possible also to identify other relevant attributes 
of moves in this example that make the nature of E 
more complex; e.g., we may introduce a5(s, x) and 
a6(s, x) to refer to the values c(x) and c(s(x)), in which 
case E would consist not only of edges but also of tour 
lengths. More generally, in such cases E should be 
treated as a collection of sets that contain elements for 
different classes of attributes. (It may be noted that the 
identification of a&, x) and a6(s, x )  indicated here 
corresponds more closely to the development of the 
type of aspiration level criteria discussed in Section 3.) 
Aspiration levels are then defined relative to the ele- 
ments of E, and governed by the same tenure structure 
previously indicated for creating and maintaining tabu 
lists. 

In particular, a different tabu list T,, p = 1, . . . , g, 
is created for each attribute a,@, x), defining 

where s h  and xh refer to the move s and vector x at 
iteration h. In the traveling salesman setting this cor- 
responds to creating a separate tabu list for each edge 
of the 2-OPT swap, and giving each list T, its own 
length t,. (The shorter of the two edges dropped from 
a tour may reasonably be given a shorter tenure on a 
tabu list than the longer, for example, to allow it to be 
added back more quickly.) 

Tabu status, or equivalently "aspiration status," is 
now defined by linking these tabu lists with an aspira- 
tion function A(e) defined on the elements e of E. 
Thus, when an element e = a,(s, x) is an attribute of 
the move from x to s(x) (as for example, where e is one 
of the edges added to the tour represented by x), the 
value A(e) is updated according to criteria analogous 
to those indicated in Section 3, e.g., A(e) = Min(A(e), 
c(x)) or A(e) = Min(A(e), c(x), c(s(x))), etc. A(e)  
initially is assigned a large ("infinite") value for each e 
in E, and is subsequently again assigned this value 
whenever e does not belong to any of the tabu lists. 

The tabu status, or aspiration status, of a move 
overall then can be made a function of the status of its 
attributes. Given that a candidate move s applied to x 
will produce an objective value c(s(x)), it is natural to 
assign an attribute of this move a passing status (indi- 
cating that it passes the aspiration test) if c(s(x)) is 
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smaller than the aspiration value for the indicated 
attribute. Specifically, an attribute a&, x) receives a 
passing status if c(s(x)) < A(e) for e = a,(& x). All 
elements e not on a tabu list therefore automatically 
receive a passing status. Others receive a passing status 
if the move to which they contribute produces an 
objective value superior to the aspiration value recorded 
when such elements became tabu. The move s, or more 
precisely the transition from x to s(x), therefore may 
be assigned a passing status if all, or a selected number 
of its attributes receive a passing status. (Related alter- 
natives might include, for example, assigning a move a 
passing status if an attribute of sufficient importance 
receives a passing status.) 

By this development, it is apparent that the repre- 
sentation of the tabu set T as a collection of moves (i.e., 
as a subset of S) in the Simple Tabu Search Procedure 
of Section 2 is not adequate for broader concerns. In 
general, T may be viewed as a collection of pairs (s, x), 
hence of solution-specific moves, characterized by a 
selected set of attributes. The specification s E S(x) - 
T thus becomes replaced by the specification s E S(x) 
and (s, x) 4 T. (In the case where the pairs (s, x) of T 
are capable of identifying solutions, without reference 
to the moves applied to them, the exclusion of (s, x) 
from T may be interpreted more simply as excluding 
s(x) from T.) 

In sum, aspiration criteria and tabu restrictions can 
be made subject to a common organizational frame- 
work, and viewed as different aspects of the same 
conceptual principle. At an extreme, as aspiration A(e) 
that is set smaller than any possible c(x) value corre- 
sponds to a preemptive tabu status. The motive under- 
lying this form of integration of aspiration criteria and 
tabu restrictions is the hypothesis that different attri- 
butes of moves indeed can have relatively different 
influences on the quality of solutions generated, and 
thus should be subject to different tenures of tabu status 
(i.e., should be recorded on tabu lists of different 
lengths) and be governed by different levels of aspira- 
tion-both of which can be achieved by the same 
general mechanism. 

5. Representation of the Search by a Directed 
Graph 

The tabu search process as described this far can be 
viewed conveniently from a graph theory perspective. 
Let G = (N, A) be a diagraph whose node set N is the 
set X of trial solutions, and whose arc set A is the set of 
all ordered pairs (x, s(x)); that is, the arcs of G consist 
of all solution-specific moves obtained by applying the 
moves of S to the elements of X. Thus, a particular 
move s corresponds to the collection of arcs ((x, s(x)): 
x E X(s)]. The set of arcs in the forward star of a given 

node x, i.e., that take x as their initial endpoint, is 
((x, ~ (x ) ) :  s E S(X)]. We note that G is symmetric, since 
for each arc (x, s(x))) there is an arc (s(x), x), obtained 
by applying the move s-' to node s(x). 

A sequence of trial solutions obtained by applying 
a succession of moves to a given starting trial solution, 
hence a sequence of the form x', x2, . . . , xr, where XI+ '  

= s(xl) for some s E S(xi), i = 1, . . . , r, identifies a 
path in G whose arcs are the ordered pairs (xi, s(xl)). 
Thus, a series of iterations of tabu search traces a path 
in G. By reference to the iteration counter k, the suc- 
cessive arcs of this path have the form (x, s~(x)) for 
consecutive values of k. By these conventions, a tabu 
list T of the form T = (sh-I: h > k - t) ,  or of the form 
T = U Ch: h > k - t (where sh-' E Ch), consists of 
collections of arcs that include each arc (sh(x), x )  which 
is the symmetric counterpart of the arc (x, sh(x)) gen-, 
erated during one of the last t iterations of the method. 
Thus, in particular, T includes as a subset the arcs of 
the path that visits the nodes sh(x), for h 3 k - t, in 
reverse order. 

From a theoretical standpoint, analysis of the effect 
of T on the sequence of solutions generated depends 
both on the nature of the moves in S and on the 
attributes of these moves which are used to identify the 
collections Ch. A potentially appealing starting point 
for such an analysis is the simple digraph that results 
for pure zero-one integer programming problems when 
Xis the set of vertices of the zero-one unit hypercube, 
c(x) is a penalty function defined over this set (e.g., to 
assure that constraints such as Ax a b are satisfied at 
optimality), and S is the set of moves that transition 
among adjacent vertices (i.e., each move has the form 
s(x) = x + e, or s(x) = x - e, for some j = I , .  . . , n). 
Then S and X respectively have 2n and 2" elements, 
every x has exactly n arcs leaving it, and every s is a 
collection of 2"-' arcs. The implications of applying a 
simple version of tabu search to such a graph G, under 
various assumptions about c(x) and the relation of t 
and n, may provide a useful foundation for understand- 
ing the behavior of more advanced versions of the 
procedure in more complex settings. 

6. The Role of Dominant and Deficient Moves 

Dominance and equivalence operate somewhat differ- 
ently in tabu search than in usual optimization contexts 
by requiring reference to the nature of the move em- 
ployed. To illustrate, consider a zero-one knapsack 
problem of the following form 

Maximize 
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If a tabu condition prevents a move that replaces xl = 
0 by xl = 1, then by apparent dominance considerations 
it should also prevent the move that replaces x2 = 0 by 
x2 = 1. In the reverse direction, a tabu condition that 
prevents a move replacing x2 = 1 by x2 = 0 should also 
prevent the move from xl = 1 to xl = 0. Note that such 
dominance, characterized relative to moves, is not the 
same as the type of dominance that implies a variable 
will be zero in an optimal solution. (Here, possibly both 
xl and x2 may equal 1 .) 

In the case where x2 has coefficients identical to 
those of XI, so that their corresponding moves are 
viewed as equivalent, similar extensions of tabu restric- 
tions apply. Equivalence operates differently from strict 
dominance, however, in that a move is not allowed if a 
strictly dominating alternative is available. (E.g., the 
move from xl = 1 to xl = 0 will not be allowed if x2 = 
1 in the current trial solution.) Equivalent moves carry 
no corresponding limitation, though they may be 
ranked arbitrarily in order to be treated in the same 
manner as strictly dominating moves. 

Since tabu search prevents certain moves from 
occurring, it may well be that employing the evaluation 
criteria of a standard heuristic within OPTIMUM may 
lead to selecting as "best" a move that should not be 
made. For example, in the knapsack problem one heu- 
ristic is to swap variables in the solution as long as 
feasibility is maintained, replacing x, = 1 by x, = 1 for 
a specified pair i, j, and evaluating the swap based on 
its contribution to the objective function. The heuristic 
operates without complication when employed as a hill 
climbing procedure, but new circumstances arise when 
the heuristic is embedded within the OPTIMUM func- 
tion. The evaluation of the heuristic must then be 
modified as a result of the ability of tabu search to 
encounter conditions not met during hill climbing. 
Specifically, in the preceding knapsack problem exam- 
ple, the swap that replaces xl = 1 by x2 = 1 can be seen 
to have a higher evaluation, i.e., yield a better objective 
function change, than the swap that replaces xl = 1 by 
X, = 1. (Note that both represent nonimproving moves.) 
Tabu search, however, classifies the former move as a 
deficient move, because it allows no possibility of an 
improved solution. Such moves are excluded from con- 
sideration by OPTIMUM regardless of the fact that 
they may receive higher evaluations than other moves 
by a standard hill climbing heuristic. 

7. Tabu Lists and Strategic Oscillation 

A major aspect of tabu search derives from inducing 
search behavior that compounds the types of patterns 
produced by a single tabu list. One of the effects of such 
a tabu list is to create a succession of solutions in which 
the objective function value oscillates. It is advanta- 

geous in certain applications, as where constraints may 
confine feasible solutions to a fairly narrow region, to 
use additional tabu lists to induce strategic oscillation 
of other parameters. To illustrate, one problem suc- 
cessfully approached in this matter was a lock box 
application modeled as a p-median problem with p 
fixed. A second tabu list was created for this problem 
that compelled successive moves to climb or descend 
to alternating depths on each side of the fixed p value, 
keeping track of the best candidate solution each time 
the value p was reached at the point of crossing. A 
similar approach clearly could be applied to problems 
where p is variable. 

The use of strategic oscillation of this type has 
several advantages. First, it permits the execution of 
moves that are less complex than might otherwise be 
required. In the lock box application, for example, 
moves lead that directly from one solution to another 
while enforcing no deviation from the fixed p value 
involve exchanges that are combinatorially more nu- 
merous (and that require more effort to evaluate) than 
the moves that allow variations around p. A second 
advantage is that moving outside of a boundary and 
returning from different directions uncovers opportu- 
nities for improvement that are not readily attainable 
when the search is more narrowly confined. Such pro- 
cedures also encourage the use of a function for evalu- 
ating the attractiveness of moves that varies depending 
on the location and direction of search (see, e.g., [3]). 

From a more general standpoint, many types of 
heuristic search procedures have "mirror opposites," as 
exemplified by the dichotomous classifications of meth- 
ods as "constructive or destructive," "interior or exte- 
rior," "feasible or infeasible," "primal or dual," and so 
forth. Rather than selecting only one type of search 
from such a classification, a wider range of opportunity 
is opened by alternating between them. Opposing strat- 
egies typically can be organized so that each point 
of crossing from one to the other represents a point of 
local optimality (relative to a given search orientation). 
Tabu lists that do not simply prohibit certain move 
reversals, but compel such crossings and returns, offer 
an effective way to avoid the suboptimal entrapment 
of standard searches. 

An example of this latter type occurs for a mul- 
tidimensional knapsack problem from a capital 
budgeting application, where the boundaries between 
feasibility and infeasibility can be crossed in either 
direction by successively incrementing or successively 
decrementing variables. (Heuristics based on locally 
best increments and decrements are easily specified for 
this problem because the coefficients of its inequality 
constraints are all nonnegative.) Thus these heuristics 
can be readily embedded in an oscillating tabu search 
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procedure that compels a specified number, say k, of 
moves beyond the feasible boundary in a given direc- 
tion before permitting a return. In one variant, k starts 
at 1 and is successively incremented to a maximum, m ,  
then successively decremented back to 1. Another var- 
iant allows rn + 1 - k iterations for each value of k, 
thus focusing more heavily on moves closer to the 
boundary. In addition to the conditions compelling this 
oscillation, two tabu lists are employed to prevent cy- 
cling, one list governing reversal of increments and one 
governing reversal of decrements. (Such an approach 
can of course be used to rebound to alternate depths 
from a boundary rather than to cross it.) 

Another advantage of an oscillating strategy is to 
permit the discovery of good solutions for perturbed 
conditions, where constraints may be slightly relaxed 
or tightened. Knowledge of solutions that are inside 
and outside feasibility boundaries can be useful to a 
variety of analyses. As in the case of the type of tabu 
conditions that prevents move reversals, the conditions 
that compel oscillation can be based on graduated 
penalties rather than preemptive stipulations. Oscilla- 
tions then are driven by a pendulum function, which 
redistributes weights associated with satisfying specified 
sets of constraints (treated hierarchically or in parallel) 
and with improving the objective function value. The 
redistribution causes the search to reverse direction at 
selected, possibly variable, distances (or numbers of 
moves) from a boundary. The pattern of behavior 
relative to a given set of constraints may be viewed as 
roughly analogous to that associated with a sine wave. 
An inviting avenue of research, not yet explored, is to 
impose constraints on alternative "harmonics" that are 
coordinated to bring their points of boundary crossing 
progressively closer until they at last converge (before 
separating again at the next swing of the pendulum). 
Such a strategy may be employed to provide good 
solutions to problems whose constraints may otherwise 
be difficult to handle. 

8. Intermediate and Long-Term Memory Functions 

Intermediate and long-term memory functions are 
employed within tabu search to achieve regional inten- 
sification and global diversification of the search. Com- 
bined with the short-term memory functions fulfilled 
by the tabu lists, the intermediate and long-term func- 
tions provide an interplay between "learning" and "un- 
learning." We comment only briefly on their form here, 
providing an additional specific illustration of how they 
can be employed in the context of the mixed integer 
programming problem in Part I1 of this study. 

Intermediate term memory operates by recording 
and comparing features of a selected number of best 
trial solutions generated during a particular period of 

search. Features that are common to all or a compelling 
majority of these solutions (such as values received by 
particular variables) are taken to be a regional attribute 
of good solutions. The method then seeks new solutions 
that exhibit these features, by correspondingly restrict- 
ing or penalizing available moves during a subsequent 
period of regional search intensification. Instances of 
this strategy have been applied in early heuristic ap- 
proaches to the traveling salesman problem (see, e.g., 
[g, 161). 

To illustrate, the structure of tabu search leads at 
once to one type of intensification strategy that is useful 
for solving large problems. Because the search strongly 
tends to focus on generating solutions that are good, it 
also tends generally to incorporate only a subset of 
decision elements (variables, edges, etc.) into these so- 
lutions. For example, in the traveling salesman context, 
for moderately dense graphs the number of different 
edges incorporated into the tours on any given solution 
pass is generally only a fraction of the total edges. Thus, 
after some initial number of iterations, the method can 
discard all edges not yet incorporated into any tour and 
then devote itself to the resulting smaller problem. 
Because iterations are now much faster to execute, the 
search can examine many more alternatives in a given 
span of time, as well as focus on possibilities that are 
likely to be attractive. 

More advanced uses of intermediate-term memory 
involve creating a network of good solutions as a matrix 
for generating other solutions with good properties. In 
particular, a collection of good solutions is used to 
define a subregion of the search space that contains 
these points (and others nearby or reachable by convex 
combinations, etc.) to provide a focus for intensified 
search, and for launching explorations into neighboring 
regions. Such an approach can be augmented by the 
use of advanced forms of discrimination analysis, which 
seek to generate a parsimonious collection of inequali- 
ties or logical conditions of two types: ( I )  to encompass 
good solutions; (2) to separate good solutions from bad. 
In combinatorial settings, such conditions will com- 
monly be based on discrimination functions involving 
both hierarchical (conditional) structures and separat- 
ing hyperplane structures. 

An interesting avenue for research is to seek to 
characterize patterns for good solutions that can be 
expressed as trajectories; e.g., that specify transitions 
among good solutions by reference to inferred differ- 
ence equations. A simple example is the following. 
Tabu search itself provides a trajectory that links good 
solutions, but this trajectory can be streamlined by 
creating a smallest set of moves to go from each im- 
proved solution to the next, and reordered (e.g., fanning 
out from one or more central points, or inward from 
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peripheral points) to give a basis for extending the 
trajectory into additional regions. Moves then can be 
chosen that most nearly match directional vectors 
established by such trajectories or that extrapolate 
systematic changes in values of variables in going from 
one solution to another. 

The long-term memory function, whose goal is to 
diversify the search, employs principles that are roughly 
the reverse of those for intermediate-term memory. 
Instead of inducing the search to focus more intensively 
on regions that contain (or that can be extrapolated 
from) good solutions previously found, the long-term 
memory function guides the process to regions that 
markedly contrast with those examined thus far. The 
approach differs from those methods that seek diversity 
by generating a series of random starting points, and 
hence which afford no opportunity to learn from the 
past. The objective is to create evaluation criteria that 
can be used by a heuristic search process which is 
specifically designed to produce a new starting point, 
thus generating such a point by purposeful instead of 
random means. (Uses of restricted randomization by 
means of probability assignments are discussed in Sec- 
tion 9.) These evaluation criteria penalize the features 
that long-term memory finds to be prevalent in pre- 
vious executions of the search process. 

A traveling salesman application again provides a 
convenient illustration. A simple form of long-term 
memory in this setting is a count of the number of 
times each edge appears in the tours generated. Penal- 
izing each edge on the basis of this count favors the 
generation of "good" starting tours (according to the 
heuristic chosen for producing such tours) that tend to 
avoid those edges most commonly used in the past. 
(This sort of approach can be viewed as using frequency 
based tabu criteria in contrast to recency based tabu 
criteria.) One way to implement such a long-term strat- 
egy is by means of a long-term tabu list, periodically 
activated, which may employ tabu conditions of in- 
creased stringency to drive the solution process into 
unexplored territory. 

The diversity achieved by this criterion can be 
increased by retaining the penalties for a period after 
transferring to the (possibly different) heuristic incor- 
porated within tabu search, and using the tabu search 
procedure to seek improved solutions. Afterward, the 
penalties are dropped and tabu search proceeds accord- 
ing to its normal evaluation criteria. This same type of 
procedure can be used to continue directly from the 
present point of search to a new region without going 
back to generate a new solution from scratch. 

Over a wider time frame, the intermediate and 
long-term functions can be layered in additional, poten- 
tially overlapping levels. An inviting avenue of research 
is to join such a layered memory strategy with a pattern 

recognition component, thereby refining and nesting 
the concept of "regions" to which intensification and 
diversification of search is applied. Ample opportunity 
exists for parallel processing that pursues paths from 
divergent starting points, then pulls back and weeds out 
the best outcomes, as a means of expanding the base 
of possibilities. 

Another application of these ideas occurs in set- 
tings where local optima are strong attractors, or "mini 
black holes" that can be left behind, once visited, only 
by an especially strong effort. For example, preliminary 
experimentation may disclose that under certain con- 
ditions-as when a local optimum is reached by a fairly 
long or steep descent-the path away from the local 
optimum consists of a slow and irregular upward climb. 
In such cases, a faster and more direct withdrawal from 
a local optimum may be desirable. 

Three strategies appear relevant to an accelerated 
retreat, drawing on a mix of intensification and diver- 
sification ideas. First is to impose more restrictive tabu 
conditions, which may include the use of attributes to 
characterize tabu status that exclude larger sets of moves 
than usual from consideration. Second is to use the 
history of the first part of the upward climb to project 
where the process is heading, and then to favor moves 
that lead in the direction thus established. Third is to 
invoke a strategy that penalizes moves based on the 
number of iterations their identifying attributes have 
been included in solutions of the past, for a chosen 
horizon. After the retreat from the local optimum has 
progressed sufficiently (by a measure experimentally 
established for the application), the strategy is relaxed 
and the method resumes its normal operation. 

The process of invoking and relaxing such a strat- 
egy of retreat, based on the contour of the solution 
path, can also be used to invoke and relax ordinary 
tabu conditions in response to the solution trajectory. 
The use of a dynamic aspiration level, drawing on the 
ideas sketched earlier, may in fact be viewed as one 
means for pursuing such an objective. Conceptually, 
the goal in all of these processes, as in the simplest types 
of tabu search schemes, is to obtain a useful estimate 
of an escape distance from a local optimum, as a 
way to determine which moves should be considered 
legitimate. 

9. Probabilistic Tabu Search 

The incorporation of a probabilistic element within 
tabu search offers an auxiliary means of pursuing its 
basic strategic goals. Basing choices of moves on the 
assignment of probabilities yields several interesting 
trade-offs between different forms of control and differ- 
ent sources of efficiency. On one level, control is gained 
by the inclusion of new search parameters (i.e., the 
weights which determine the probabilities assigned), 
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while on another level control is lost by the recourse to 
randomization that a more systematic approach would 
avoid. We propose the view that randomization is a 
means for achieving diversity without reliance on mem- 
ory. (Diversity in this context ranges from the local 
type provided by the operations of a tabu list, to the 
global type provided by the long-term memory ap- 
proaches of the preceding section.) By this view, the use 
of randomization, via assigned probabilities, allows a 
gain in efficiency by obviating extensive record keeping 
and evaluation operations that a more systematic pur- 
suit of diversity may require. At the same time, it entails 
a loss in efficiency by allowing duplications and poten- 
tially unproductive wandering that a more systematic 
approach would seek to eliminate. 

Three strategic principles of tabu search stand out 
among those that lend themselves to a probabilistic 
treatment. In summary, they may be expressed as fol- 
lows: (1) more attractive moves, yielding smaller c(x) 
values under minimization, have a higher status (and 
thus should receive higher probability of acceptance); 
(2) the status of a move is diminished (entailing a lower 
probability of acceptance) if it belongs to a class that 
includes the reversal or, alternatively, repetition of a 
move recently made; (3) thresholds of aspiration, based 
on previous performance, can override an otherwise 
diminished status, yielding a reinforced or even a 
preemptive basis for selection (acceptance with proba- 
bility 1). For problems with large numbers of alterna- 
tives, these principles operate within the context of 
restricting attention to candidate sets of moves. 

As a basis for comparing a probabilistic version of 
tabu search with another probabilistic strategy, it may 
be noted that these principles are markedly different 
from those underlying simulated annealing. In simu- 
lated annealing, for example, all improving moves have 
the same status, as reflected in the stipulation that any 
improving move encountered in a random sequence 
of examination will be accepted automatically. Non- 
improving moves in simulated annealing have a status 
which starts relatively high when c(x) is high (though 
the change induced in c(x) also plays a role) and 
gradually diminishes in successive stages until the prob- 
ability of acceptance is extinguished. In accordance with 
this, a starting solution is selected which is far from 
optimality, to allow the process to operate for an ex- 
tended time at stages where c(x) takes on larger values, 
and (presumably) to assure that the local optimum 
to which the process ultimately descends will be a 
good one. 

The elements that underlie the assignment of prob- 
abilities for tabu search, by contrast, maintain the dis- 
tinction between relative attractiveness of alternative 
moves at all stages, without giving unimproving moves 
higher status at the beginning and without progressively 

diminishing their chance for consideration at later 
stages. Likewise, tabu search does not specify that the 
process should start with a solution far from optimality 
or that the best solution is to be identified by the local 
optimum reached at the conclusion of an eventual 
undeviating descent. Such strongly contrasting strategic 
frameworks are likely to have similarly contrasting 
effects. (Effects that lead to different types of solution 
paths do not necessarily imply differences in solution 
quality. However, it is predicted in [3] that efforts to 
improve simulated annealing will lead to replacing its 
rules with those more closely resembling the prescrip- 
tions of tabu search-a prediction that appears to gain 
support from recent s tudie~.[ '~~])  

The embodiment of the preceding first-order strat- 
egy considerations of tabu search in a probabilistic 
approach is entirely straightforward. The probabilities 
governing the acceptance of moves from a specified 
candidate set derive from three sources, extracted di- 
rectly from the three strategy considerations indicated. 
These sources are: (Sl) move attractiveness, related 
to changes induced in c(x); (S2) tabu status, related to 
tenure on a tabu list; (S3) aspiration level, related 
to the value of c(x) achieved in relation to a historical 
standard (possibly maintained as an inverse form of 
tabu status). 

Consider first the source (Sl). By our orientation, 
the introduction of probabilities has the role of lessening 
dependence on memory (i.e., the element of randomi- 
zation makes it possible to be different from the past 
without remembering the past). Accordingly, we can 
pose an extreme, or "degenerate," form of probabilistic 
tabu search based on (Sl) alone. For this extreme (and 
also for versions incorporating considerations from 
other sources) the determination of probabilities can be 
made in both a nonsequential and a sequential manner. 

In the nonsequential approach, consider a positive- 
valued weight function w(s) which reflects the relative 
attractiveness of applying the move s to the current 
solution x ;  e.g., w(sf ) > w ( s n )  if c(sr(x)) < c(sn(x)). 
(The function w may depend on x in ways other than 
determined by the objective function value.) Then, if 
S*(x) is a candidate set of moves taken from S(x), we 
may choose a move s r  from S*(x) by constructing a 
sample of size 1 from the uniform distribution with the 
probability P(s ' ) given by 

A sequential approach can be based on an approx- 
imation of the foregoing probability assignment (e.g., 
by starting with a small sample of moves from S*(x) 
as a first guess for the denominator of P(sl)), or can 
take a somewhat different form. One set of alternatives 
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arises by viewing the choice of a move as the outcome 
of duels between successive contestants. Each duel pro- 
duces a winner (which begins with an arbitrary move 
from the set). As each move in succession competes 
with the previous winner, the better of the two contest- 
ants (the one that yields a smaller value of c(x)) is 
selected with a prescribed probability. For example, in 
a very simple type of strategy, the better of two moves 
may be chosen as the new winner with probability 0.8, 
0.7, or 0.6 according to whether: (a) only one of the 
two contestants is an improving move, (b) both are 
nonimproving or (c) both are improving. Such a se- 
quential strategy creates a bias against earlier moves in 
the sequence, and hence it is appropriate to compensate 
for this by adjusting the indicated probabilities to start 
higher and decay through the sequence. 

Next consider the source (S2). The use of proba- 
bilities based on this source yields a strategy that more 
closely resembles the form of constrained search that 
occurs in the nonprobabilistic case. Whether used in 
conjunction with (Sl) or in isolation, (S2) has the effect 
of altering the choice process by introducing a proba- 
bility of acceptance based on tabu status, where tabu 
moves with shorter residence on a tabu list (i.e., which 
have become tabu more recently) receive a lower prob- 
ability of acceptance than those of longer residence. We 
illustrate how this operates in the sequential mode of 
examination. On a tabu list of length 10, for example, 
we may define "tabu probabilities" assigned to moves 
from shortest to longest residence as the elements from 
a sequence such as 

or some combination of the two. (Any monotonic 
sequence that begins with a fraction and ends with the 
value 1 is appropriate.) In reality, the length of the tabu 
list fur this example is effectively 9, since the tenth 
element is accepted for consideration with probability 
1. All non-tabu moves, similarly, are regarded to have 
tabu probabilities equal to 1. 

In comparing two moves, whether incorporating 
probabilities based on (Sl) or not, the move normally 
selected as the winner will be accepted as the new 
incumbent with a probability which is the ratio of its 
tabu probability to that of its competitor, bounding this 
ratio above by 1. For example, a winner which is not a 
tabu move will be accepted automatically. If the winner 
is a tabu move with tabu probability '/6 and its com- 
petitor is a tabu move with tabu probability '/3, then 
the winner will be accepted as the "true winner" only 
with probability l/z (= '/6 + '/3). By analogy to the case 

for sequential examination using (Sl), adjustments can 
be made to offset the bias against a tabu move selected 
as a winner earlier in the sequence. Such tabu proba- 
bilities can also be used in a nonsequential choice 
process by multiplying them by the weights w(s), 
s E S*(x), to produce amended weights for an assign- 
ment of probabilities under (Sl). 

Finally, the use of (S3) in producing probabilities 
is similarly straightforward. Aspiration levels can offset 
the diminished chance of acceptance produced by tabu 
probabilities, and can also amend probabilities that are 
assigned without reference to tabu status. Based on the 
stringency and tenure of an aspiration level, a move 
whose probability of acceptance is determined by cri- 
teria based on either (Sl) or (S2) may have this proba- 
bility elevated part or all of the way to 1. 

Clearly it is possible to mix the probabilistic and 
nonprobabilistic elements of tabu search in a variety of 
ways. For example, a tabu list can be divided into 
probabilistic and nonprobabilistic components, where 
a specified number of elements most recently added 
receive a tabu status in the ordinary way. Equivalently, 
these elements may be given a tabu probability equal 
to 0 in the type of implementation illustrated for (S2). 
Similarly, moves that exceed other thresholds can be 
given acceptance probabilities of 0 to 1 as a means 
of blending the probabilistic and nonprobabilistic 
elements. 

The foregoing proposed uses of probabilities can 
easily be controlled to assure an optimal solution will 
be found with probability 1 as the number of iterations 
is allowed to grow indefinitely. Such a result occurs 
even if (Sl) is the only source of the probabilities, 
provided S*(x) is taken to be S(x) (or a nonempty 
random sample of S(x)) and all assigned probabilities 
are bounded from below by a positive constant, given 
that elements are examined in a random order for the 
sequential case. Then it is only necessary to assume 
that the digraph G of Section 5 is finite, and a directed 
path exists from each node of G to each other node. 
We sketch an informal proof as follows. Under the 
indicated assumptions, each time a node of G is visited 
by the method, there is a positive probability of choos- 
ing each arc that leaves the node. (This probability is 
bounded from below by a constant which is some 
fraction of the positive constant of the assumptions.) 
Suppose that a particular node (e.g., corresponding to 
an optimal solution) is never visited. Then after an 
initial finite number of iterations, there are two subsets 
of nodes, N' and N", where each node in N' will be 
visited an infinite number of times and each node in 
N" will never again be visited. At least one node of N' 
must have an arc that leads to a node of N". The 
probability of not choosing this arc is bounded above 
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by a constant less than 1. Thus, the probability that N' 
does not contain the associated node of N" goes to 0 
as the number of iterations goes to infinity, which 
establishes the assertion that the initial excluded node 
will be visited with probability 1. 

Probability assignments based on incorporating 
(S2) and (S3) similarly can easily be controlled to assure 
the same outcome will hold. Aspiration levels that 
elevate probabilities of selecting moves that produce 
new solutions can locally override the stipulation that 
no move in S*(x) receives a probability smaller than a 
positive constant. It is also permissible to periodically 
allow the probabilities to be more nearly uniform for a 
selected number of steps-a strategy analogous to purg- 
ing the tabu list in the nonprobabilistic version. It is 
noteworthy that the assurance of finding an optimal 
solution does not depend on the heuristic power of 
skewing the probabilities to conform with the principles 
of tabu search. This fact encourages the orientation that 
probabilities operate as an escape hatch to hedge against 
persistent wrong moves in the absence of reliable 
knowledge (or a more perceptive strategy) to guide 
the search. 

Analogous incorporation of probabilistic elements 
in intermediate and long-term memory functions of 
tabu search are likewise possible. In each case, incor- 
porating a randomized element introduces trade-offs in 
memory capacity and efficiency of processing. (For 
example, increased reliance on a random factor in (Sl) 
should decrease the effective length of a tabu list, while 
increased reliance on a random factor in (S2) should 
have the opposite effect.) Experimentation to charac- 
terize the relative effects of these trade-offs remains to 
be undertaken. 

10. Practical Applications and Future Directions 

Tabu search originated as a method for solving real 
world combinatorial problems in scheduling and cov- 
ering. Its adaptability to solving other types of combi- 
natorial problems by changing the definition of a move, 
and by modifying the definition of OPTIMUM and the 
composition of the tabu lists, brought about its appli- 
cation to additional problem settings. Some of the 
practical problems to which it has been applied are 
as follows. 

1. A scheduling problem for distributing work- 
loads among machines to assure all processing demands 
are adequately met over the time horizon. This problem 
was one of the first tabu search appli~ations,'~] formu- 
lated as a nonlinear (quadratic) generalized covering 
problem involving 300 to 500 integer variables and 
approximately 100 constraints with positive right hand 
sides. Using the strategic oscillation approach of Sec- 
tion 7, tabu search succeeded in obtaining solutions 

with objective function values less than half as large as 
other methods tested, and required 10 to 20 seconds 
CPU time per problem on the CDC 6600 computer. 

2. A computer channel balancing problem for as- 
signing loads to channels to minimize deviations from 
targets, constituting a generalized multidimensional bin 
packing pr~blem.[~ .~]  Problems corresponding to zero- 
one MIPS involving 106 to 1000 variables were solved 
in less than 1 minute on a Honeywell DPS-8 computer. 
The resulting solutions were dramatically superior to 
those obtained by the commercial MPS system, which 
was allowed to run up to 15 minutes and consumed 
from 9 to 150 times as much CPU time as tabu search 
per problem. For the goal of minimizing deviations, 
the smallest, median and largest of the "minimized" 
deviations for 20 problems were as follows[41: 

Deviations 
- - - - 

Method Smallest Median Largest 

Commercial 
MPS program 60 7327 Infinitya 

Tabu search 0 10 18 

" No feasible solution found. 

3. A subset criterion and clustering problem used 
in space planning and architectural design. Problems 
corresponding to zero-one MIPS with over 25,000 vari- 
ables and 50,000 constraints were solved in less than 
one minute on a V77 minicomputer. (The software is 
incorporated in the SPDS system used by commercial 
space planning firms, as reported in [6].) 

4. A large scale employee scheduling problem to 
assign employees to work stations and duty rosters, 
while satisfying restrictions imposed by time period 
demands, employee availabilities, union rules and com- 
pany policy.[71 The integration of tabu search with 
pattern recognition and decomposition strategies suc- 
ceeded in solving problems corresponding to zero-one 
MIPS with 1,000,000 to 4,000,000 variables and 3,400 
to 9,000 constraints to within 98% of optimality in 
22-24 minutes on an IBM PC microcomputer. 

In addition to such practical applications, experi- 
ments are currently in progress applying tabu search 
to classical combinatorial problems. A preliminary 
exploration of the traveling salesman problem[lS1 has 
tested seven problems, the first three ranging from 25 
to 57 cities with known optimal solutions, and the last 
four ranging from 50 to 110 cities, representing "small 
but hard" problems from the study by whose 
optimal solutions are unknown. 

Using the standard moves of the 2-OPT heuris- 
tic,[I6' and employing the simple tabu list and aspiration 
level structure suggested for the traveling salesman 
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problem in [3], tabu search easily found the known 
optimal solutions for each of the first three problems, 
requiring an average of 5 minutes (depending on the 
randomly generated starting tour) for the largest prob- 
lem (57 cities) on an IBM AT microcomputer. The 
four "hard" problems each were subjected to 16 solu- 
tion attempts, employing four different starting 
solutions and four different tabu list sizes (ranging from 
n/4 to n). The best solutions generated by tabu search 
for all but the 1 10 city problem typically were found in 
less than one minute on a VAX 1 11780 and in all but 
5 of the 64 runs these solutions were superior to the 
previous best solutions reported for these problems 
(matching the previous best for all but 2 of the remain- 
ing runs). The 110 city problem lived up to its reputa- 
tion in difficulty, requiring from 4 minutes to nearly 
20 minutes to find the best solutions for a given run, 
though in each case this solution was superior to the 
best previously found. 

Figures 1 and 2 show the results of two typical runs 
for a 75 node problem from the "hard group. The 
horizontal line in these figures identifies the tour length 
of 553 previously conjectured to be optimal. The 
graphed points in the figures identify the subset of 
solutions generated by tabu search that consisted of 
those "local optima" (generated subject to the tabu 
conditions) which were strictly better than all their 
predecessors. (Thus, other local optima were generated 
but not shown. The method does not keep track of 
these or note their "local optimality" character.) The 
first point in each figure therefore represents the local 
optimum found by making 2-OPT moves before the 
tabu search procedure is activated. In each case tabu 
search goes well beyond this first point, and also beyond 
the best previously known tour length. 

An interesting feature of this comparison is that 
the previous best solutions from the study of [2 11 were 

R E A R C H  -- 75 NODE T S p  

Figure 1. Typical run for 75 node problem. 

TABU SEARCH -- 75 NODE TSP 
566 7 

Figure 2. Typical run for 75 node problem. 

obtained by multiple solution attempts using a refine- 
ment of the 3-OPT heuristic, which is somewhat more 
powerful than the 2-OPT heuristic incorporated into 
the tabu search implementation. The outcome illus- 
trates the ability of tabu search to guide a relatively 
simple heuristic in a manner that allows it to outper- 
form procedures that are normally superior. Such an 
ability can be advantageous in applications where, 
unlike the traveling salesman setting, the problem does 
not have a simple structure susceptible to highly spe- 
cialized procedures, and the state-of-the-art is unable 
to benefit from years of study on sophisticated ways to 
exploit such structure. 

Further insights into the performance of tabu 
search are provided by Figures 3 and 4, which show the 
pattern of solutions generated over a subsequence of 
iterations for the "easy" 42 city problem. Figure 3 shows 
the first 500 iterations, starting from an evidently very 
poor initial tour, and Figure 4 shows the sequence from 
iteration 30 to iteration 130 in greater detail. This latter 
figure gives a clearer indication of the variability of tour 
lengths produced. (The optimum tour was found on 
iteration 83.) At the same time, it is clear that many of 
the tours generated are "good tours." This additional 
characteristic of tabu search-the tendency to produce 
a variety of solutions that fall in an attractive range- 
can be useful in situations where a mathematical model 
is used to generate candidate solutions that must then 
be evaluated further on the basis of external criteria. 

An incidental finding of interest from this prelim- 
inary study concerns the appropriate magnitude of tabu 
list sizes. Previous applications had found effective tabu 
list sizes to lie in the range from 5 to 12, clustered 
around 7, a finding that appeared to be independent of 
problem size and structure. The much larger tabu list 
sizes for the traveling salesman problem, and their 
dependency on problem size, show that the choice of a 
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TABU SEARCH - 42 CITY TSP 

Figure 3. Tabu search, first 500 iterations. 

TABU SEARCH - 42 CITY TSP 

Figure 4. Tabu search, detail of iteration 30 to iteration 130. 

good tabu list size is more subtle than previous empir- 
ical outcomes had suggested. 

Studies have recently appeared that compare tabu 
search to simulated annealing. The study by Hertz and 
de Werra[lZ1 conducts experimental comparisons for 
graph coloring problems ranging from 100 to 1000 
nodes, demonstrating that tabu search obtains solutions 
of significantly higher quality than simulated annealing 
in this setting, while expending less computational ef- 
fort. An investigation by Bhasin, Carreras and Tara- 
porevola[ll examines methods for cell layout problems 
in integrated circuit design. Adopting the objective of 
minimizing channel density, the authors similarly find 
that tabu search gives better results than simulated 
annealing and while requiring a significantly lower run 
time. A study by Malek1181 involves computational com- 
parisons for the traveling salesman problem, applying 
tabu search with a long-term memory diversification 

strategy, patterned after that discussed in Section 8. 
Malek reports the ability to obtain optimal solutions to 
the test problems with substantially greater frequency 
using tabu search than simulated annealing, while con- 
suming only '/3 to '/25 the computational effort. The 
related work of Hansen and Jaumard,["] based on the 
independent development of Han~en,~"] likewise de- 
serves mention in this regard, obtaining results superior 
to the simulated annealing for maximum satisfiability 
problems. On the other hand, the study by Guruswany, 
Owens and PandyaIg1 suggests there may be value to 
combining simulated annealing and tabu search in a 
parallel processing environment. 

Studies comparing tabu search to more specialized 
methods also have recently appeared. A study by 
Widmer and compares tabu search to six 
alternative approaches to the flow shop sequencing 
problem. Using an iteration cutoff rule that keeps tabu 
search from running longer than 12 minutes on an IBM 
PC Computer, for problems involving 20 jobs and 20 
machines, the authors find that tabu search obtains 
solutions superior to all other methods in 80% of the 
cases. Doubling the cutoff limit produces superior so- 
lutions in 90% of the cases. A sequel to this study by 
Hertz, de Werra and Widmerr131 reports comparisons 
for time tabling and layout problems, disclosing that 
tabu search methods gives better results than any other 
method tested. Interestingly, these latter two implemen- 
tations of tabu search, and the one cited previously for 
the graph coloring problem, make no use of aspiration 
level criteria or of the strategic elements described in 
the sections following Section 2. 

These outcomes offer encouraging evidence that 
tabu search may have a useful place among the tools 
for solving combinatorial optimization problems. At 
the same time, it must be acknowledged that the poten- 
tial and limitations of this class of methods remain less 
than fully charted, and many aspects of tabu search- 
both theoretical and applied-remain to be discovered. 
Possibilities for merging with other procedures (includ- 
ing, for example, alternative search strategies derived 
from neural networks, genetic algorithms and simu- 
lated annealing) likewise offer intriguing avenues for 
exploration. 
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